Monge Problem in Metric Measure Spaces with Riemannian Curvature-dimension Condition

نویسنده

  • FABIO CAVALLETTI
چکیده

We prove the existence of solutions for the Monge minimization problem, addressed in a metric measure space (X, d,m) enjoying the Riemannian curvature-dimension condition RCD∗(K,N), with N < ∞. For the first marginal measure, we assume that μ0 ≪ m. As a corollary, we obtain that the Monge problem and its relaxed version, the Monge-Kantorovich problem, attain the same minimal value. Moreover we prove a structure theorem for d-cyclically monotone sets: neglecting a set of zero mmeasure they do not contain any branching structures, that is, they can be written as the disjoint union of the image of a disjoint family of geodesics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds

Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...

متن کامل

Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distin...

متن کامل

Curvature based triangulation of metric measure spaces

We prove that a Ricci curvature based method of triangulation of compact Riemannian manifolds, due to Grove and Petersen, extends to the context of weighted Riemannian manifolds and more general metric measure spaces. In both cases the role of the lower bound on Ricci curvature is replaced by the curvature-dimension condition CD(K,N). We show also that for weighted Riemannian manifolds the tria...

متن کامل

Ricci curvature , entropy and optimal transport – Summer School in Grenoble 2009 – ‘ Optimal Transportation : Theory and Applications

These notes are the planned contents of my lectures. Some parts could be only briefly explained or skipped due to the lack of time or possible overlap with other lectures. The aim of these lectures is to review the recent development on the relation between optimal transport theory and Riemannian geometry. Ricci curvature is the key ingredient. Optimal transport theory provides a good character...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013